

django-envelope

[image: Latest PyPI version]
 [https://pypi.python.org/pypi/django-envelope/][image: Number of PyPI downloads]
 [https://pypi.python.org/pypi/django-envelope/][image: Supported Python versions]
 [https://pypi.python.org/pypi/django-envelope/][image: Wheel Status]
 [https://pypi.python.org/pypi/django-envelope/][image: https://travis-ci.org/zsiciarz/django-envelope.png?branch=develop]
 [https://travis-ci.org/zsiciarz/django-envelope][image: https://coveralls.io/repos/zsiciarz/django-envelope/badge.png]
 [https://coveralls.io/r/zsiciarz/django-envelope]django-envelope is a simple contact form app for Django web framework.

Basic usage

	Install with pip install django-envelope.

	Add envelope to your INSTALLED_APPS.

	Create a template envelope/contact.html that contains somewhere
a call to {% render_contact_form %} template tag. This tag can be
imported by placing {% load envelope_tags %} at the top of your
template.

	Hook the app’s URLconf in your urls.py like this:

urlpatterns = patterns('',
 #...
 (r'^contact/', include('envelope.urls')),
 #...
)

See the docs [http://django-envelope.rtfd.org] for more customization
options.

Resources

	Documentation [http://django-envelope.rtfd.org]

	Issue tracker [https://github.com/zsiciarz/django-envelope/issues]

	CI server [https://travis-ci.org/zsiciarz/django-envelope]

Authors

django-envelope is maintained by Zbigniew Siciarz [http://siciarz.net].
See AUTHORS.rst for a full list of contributors.

License

This work is released under the MIT license. A copy of the license is provided
in the LICENSE file.

The HTML template comes from
Open Source Template Project [https://github.com/sendwithus/templates] by
sendwithus.com, distributed under the Apache 2.0 license (see the APACHE_LICENSE
file for the full text).

Gratipay

Like this project? You can support it via Gratipay [https://www.gratipay.com/zsiciarz]!

Documentation

	Installation

	Usage

	Configuration

	Customization

	Cookbook
	Success and error messages

	Bootstrap integration

	Categorized contact form

	Development
	Contributing

	Running tests

	CI Server

	Reference
	Views

	Forms

	Template tags

	Spam filters

	Signals

	Changelog
	1.3.0

	1.2.0

	1.1.0

	1.0.0

	0.7.0

	0.6.1

	0.6.0

	0.5.1

	0.5.0

	0.4.1

	0.4.0

	0.3.2

	0.3.1

	0.3.0

	0.2.1

	0.2.0

	0.1.4

	0.1.3

	0.1.2

	0.1.1

	0.1.0

Indices and tables

	Index

	Module Index

	Search Page

Installation

Make sure you have Django installed. Then install the package from PyPI:

pip install django-envelope

If you like living on the edge, grab the development version from Github [https://github.com/zsiciarz/django-envelope]:

git clone https://github.com/zsiciarz/django-envelope.git
cd django-envelope
python setup.py install

To enable a simple antispam check, install django-honeypot [https://github.com/sunlightlabs/django-honeypot/]. Envelope will
automatically pick that one up and use in the contact form.

Usage

Add envelope to your INSTALLED_APPS in settings.py. The application
does not define any models, so a manage.py syncdb is not needed. If you
installed django-honeypot, add also honeypot to INSTALLED_APPS.

For a quick start, simply include the app’s urls.py in your main URLconf, like
this:

urlpatterns = patterns('',
 #...
 (r'^contact/', include('envelope.urls')),
 #...
)

The view that you just hooked into your URLconf will try to render a
envelope/contact.html template. Create that file in some location
where Django would be able to find it (see the Django template docs [https://docs.djangoproject.com/en/dev/ref/templates/api/#loading-templates]
for details).

Note

Changed in version 1.0: django-envelope used to ship with one such template by default.
However, it made too opinionated assumptions about your templates and
site layout. For that reason it was removed and you must now create
the template explicitly.

This template file can (and possibly should) extend your base site template.
The view will pass to the context a form variable, which is an instance
of ContactForm. You can write your own HTML code
for the form or use the provided {% render_contact_form %} template tag
for simplicity. For example (assuming base.html is your main template):

{% extends "base.html" %}
{% load envelope_tags %}

{% block content %}
 {% render_contact_form %}
{% endblock %}

That’s basically it. Navigate to the given URL and see the contact form in
action. See Customization for more customization options.

Configuration

These values defined in settings.py affect the application:

	DEFAULT_FROM_EMAIL: This is the sender of the email sent with your
contact form.

Note

(Some mail servers do not allow sending messages from an
address that is different than the one used for SMTP authentication.)

	ENVELOPE_EMAIL_RECIPIENTS: A list of e-mail addresses of people who will
receive the message. For backwards compatibility reasons, the default value
is a list where the only element is DEFAULT_FROM_EMAIL.

	ENVELOPE_SUBJECT_INTRO: The prefix for subject line of the email message.
This is different than EMAIL_SUBJECT_PREFIX which is global for the whole
project. ENVELOPE_SUBJECT_INTRO goes after the global prefix and is
followed by the actual subject entered in the form by website’s user.

Default value: Message from contact form:

	ENVELOPE_USE_HTML_EMAIL: Whether to send an HTML email along with the
plaintext one. Defaults to True.

Customization

Most of the time, including envelope.urls is just fine. But if you want more
control over the contact form, you need to hook the view into your URLconf
yourself. Just import envelope.views.ContactView, and call the
as_view classmethod when defining URL patterns.

Example:

urls.py
from django.conf.urls import patterns, url
from envelope.views import ContactView

urlpatterns = patterns('',
 url(r'^contact/', ContactView.as_view()),
)

If you want some more fine-grained control over the contact form, you can
customize the view class. You can inherit from envelope.views.ContactView
and set class attributes in your derived view class, or simply pass
the values for these attributes when calling as_view in your URLconf.

Example (using a subclass):

some_app/views.py
from envelope.views import ContactView

class MyContactView(ContactView):
 template_name = "my_contact.html"
 success_url = "/thank/you/kind/sir/"

urls.py
from django.conf.urls import patterns, url
from some_app.views import MyContactView

urlpatterns = patterns('',
 url(r'^contact/', MyContactView.as_view()),
)

Example (setting attributes in place):

urls.py
from django.conf.urls import patterns, url
from envelope.views import ContactView

urlpatterns = patterns('',
 url(r'^contact/', ContactView.as_view(
 template_name="my_contact.html",
 success_url="/thank/you/kind/sir/"
)),
)

The following options (as well as those already in Django’s FormView [https://docs.djangoproject.com/en/dev/ref/class-based-views/#django.views.generic.edit.FormView]) are recognized by the view:

	form_class: Which form class to use for contact message handling.
The default (envelope.forms.ContactForm) is often enough, but you can subclass it
if you want, or even replace with a totally custom class. The only requirement is
that your custom class has a save() method which should send the message
somewhere. Stick to the default, or its subclasses.

	template_name: Full name of the template which will display the form. By
default it is envelope/contact.html.

	success_url: View name or a hardcoded URL of the page with some kind of a
“thank you for your feedback”, displayed after the form is successfully
submitted. If left unset, the view redirects to itself.

	form_kwargs: Additional kwargs to be used in the creation of the form. Use with envelope.forms.ContactForm form arguments for dynamic customization of the form.

You can also subclass envelope.forms.ContactForm to further customize
your form processing. Either set the following options as keyword arguments to
__init__, or override class attributes.

	subject_intro: Prefix used to create the subject line. Default is settings.ENVELOPE_SUBJECT_INTRO.

	from_email: Used in the email from. Defaults to settings.DEFAULT_FROM_EMAIL.

	email_recipients: List of email addresses to send the email to. Defaults to settings.ENVELOPE_EMAIL_RECIPIENTS.

	template_name: Template used to render the plaintext email message. Defaults to envelope/email_body.txt. You can use any of the form field names as template variables.

	html_template_name: Template used to render the HTML email message. Defaults to envelope/email_body.html.

Example of a custom form:

forms.py
from envelope.forms import ContactForm

class MyContactForm(ContactForm):
 subject_intro = "URGENT: "
 template_name = "plaintext_email.txt"
 html_template_name = "contact_email.html"

urls.py
from django.conf.urls import patterns, url
from envelope.views import ContactView
from forms import MyContactForm

urlpatterns = patterns('',
 url(r'^contact/', ContactView.as_view(form_class=MyContactForm)),
)

Cookbook

Success and error messages

Starting from release 1.0, envelope.views.ContactView does not set any
messages [https://docs.djangoproject.com/en/dev/ref/contrib/messages/] since these were customized by most users anyway. We encourage
you to use the excellent django-braces [https://github.com/brack3t/django-braces] app which provides a
FormMessagesMixin [http://django-braces.readthedocs.org/en/latest/form.html#formmessagesmixin] designed specifically for this purpose.

The following example shows how to add the mixin to ContactView:

from braces.views import FormMessagesMixin
from envelope.views import ContactView

from django.utils.translation import ugettext_lazy as _

class MyContactView(FormMessagesMixin, ContactView):
 form_valid_message = _(u"Thank you for your message.")
 form_invalid_message = _(u"There was an error in the contact form.")

See the customization section on how to plug
the subclassed view into your URLconf.

Check out Django messages documentation [https://docs.djangoproject.com/en/dev/ref/contrib/messages/#enabling-messages] to make sure messages are enabled in your project.

Bootstrap integration

Embedding the contact form

From our personal experience with Bootstrap [http://getbootstrap.com/]-powered websites, the easiest
way to embed the contact form is to use django-crispy-forms [https://github.com/maraujop/django-crispy-forms]. Install it
with:

pip install django-crispy-forms

and add crispy_forms to INSTALLED_APPS. From there it’s as simple as
adding a crispy template tag to display the form. For example:

{% load envelope_tags crispy_forms_tags %}

...

<form action="{% url 'envelope-contact' %}" method="post">
 {% csrf_token %}
 {% antispam_fields %}
 {% crispy form %}
</form>

To add a submit button, create a custom form using django-crispy-forms helper:

forms.py
from envelope.forms import ContactForm
from crispy_forms.helper import FormHelper
from crispy_forms.layout import Submit

class MyContactForm(ContactForm):
 def __init__(self, *args, **kwargs):
 super(MyContactForm, self).__init__(*args, **kwargs)
 self.helper = FormHelper()
 self.helper.add_input(Submit('submit', 'Submit', css_class='btn-lg'))

And finally link this form to your view:

views.py
from braces.views import FormMessagesMixin
from envelope.views import ContactView

from django.utils.translation import ugettext_lazy as _

from .forms import MyContactForm

class MyContactView(FormMessagesMixin, ContactView):
 form_invalid_message = _(u"There was an error in the contact form.")
 form_valid_message = _(u"Thank you for your message.")
 form_class = MyContactForm

or just use it in your urls.py if you directly reference ContactView as_view() method:

urls.py
from django.conf.urls import patterns, url
from envelope.views import ContactView

from .forms import MyContactForm

urlpatterns = patterns('',
 url(r'^contact/', ContactView.as_view(form_class=MyContactForm)),
)

Displaying form messages nicely

GETting the contact form page after POSTing it will give you access to either a success message (form_valid_message)
or an error message (form_invalid_message) thanks to django-braces’ FormMessagesMixin. These messages use
Django messages tag level [https://docs.djangoproject.com/en/dev/ref/contrib/messages/#message-tags] so you can use the right Bootstrap class.

We recommend you first override Django’s default message tags as following:

settings.py
MESSAGE_TAGS = {
 messages.DEBUG: 'debug',
 messages.INFO: 'info',
 messages.SUCCESS: 'success',
 messages.WARNING: 'warning',
 messages.ERROR: 'danger' # 'error' by default
}

Then you can use Django’s tip [https://docs.djangoproject.com/en/dev/ref/contrib/messages/#displaying-messages] to display messages with Bootstrap CSS classes such as text-info or alert-warning:

{% if messages %}
 <ul class="messages">
 {% for message in messages %}
 <li {% if message.tags %} class="text-{{ message.tags }}"{% endif %}>
 {{ message }}

 {% endfor %}

{% endif %}

Categorized contact form

Although the category field was removed from the default form class in
1.0, you can bring it back to your form using the following subclass:

from envelope.forms import ContactForm

from django import forms
from django.utils.translation import ugettext_lazy as _

class CategorizedContactForm(ContactForm):
 CATEGORY_CHOICES = (
 ('', _("Choose")),
 (10, _("A general question regarding the website")),
 # ... any other choices you can imagine
 (None, _("Other")),
)
 category = forms.ChoiceField(label=_("Category"), choices=CATEGORY_CHOICES)

 def __init__(self, *args, **kwargs):
 """
 Category choice will be rendered above the subject field.
 """
 super(CategorizedContactForm, self).__init__(*args, **kwargs)
 self.fields.keyOrder = [
 'sender', 'email', 'category', 'subject', 'message',
]

 def get_context(self):
 """
 Adds full category description to template variables in order
 to display the category in email body.
 """
 context = super(CategorizedContactForm, self).get_context()
 context['category'] = self.get_category_display()
 return context

 def get_category_display(self):
 """
 Returns the displayed name of the selected category.
 """
 try:
 category = int(self.cleaned_data['category'])
 except (AttributeError, ValueError, KeyError):
 category = None
 return dict(self.CATEGORY_CHOICES).get(category)

Development

Contributing

Report bugs

Use the issue tracker [https://github.com/zsiciarz/django-envelope/issues] on GitHub to file bugs.

Hack on the code

Fork the repository on GitHub, do your work in your fork (rhymes, eh?)
and send me a pull request. Try to conform to PEP 8 [https://www.python.org/dev/peps/pep-0008] and make sure
the tests pass (see below).

Running tests

Note

It is recommended to work in a virtualenv [http://www.virtualenv.org/].

All dependencies required for running tests are specified in the file
test_requirements.txt.

Note

If you get errors such as ImportError: No module named mock while
running tests, you’re probably on Python 2 (Python 3 has mock in
standard library). To fix that, run pip install mock.

To get the tests up and running, follow these commands:

virtualenv envelope
cd envelope
source bin/activate
git clone https://github.com/zsiciarz/django-envelope.git
cd django-envelope
pip install -r test_requirements.txt
make test

Note

First three steps can be simplified by using virtualenvwrapper [http://www.doughellmann.com/projects/virtualenvwrapper/].

To get a coverage report, replace the last command with:

make coverage

CI Server

The GitHub repository is hooked to Travis CI [https://travis-ci.org/zsiciarz/django-envelope]. Travis worker pushes code
coverage to coveralls.io [https://coveralls.io/r/zsiciarz/django-envelope] after each successful build.

Reference

Views

	
class envelope.views.ContactView(**kwargs)

	Contact form view (class-based).

Displays the contact form upon a GET request. If the current user is
authenticated, sender and email fields are automatically
filled with proper values.

When the form is submitted and valid, a message is sent and
afterwards the user is redirected to a “thank you” page (by default
it is the page with the form).

	form_class

	Which form class to use for contact message handling.
The default (envelope.forms.ContactForm) is often
enough, but you can subclass it if you want, or even replace
with a totally custom class. The only requirement is that your
custom class has a save() method which should send the
message somewhere. Stick to the default, or its subclasses.

	form_kwargs

	Additional kwargs to be used in the creation of the form. Use
with envelope.forms.ContactForm form arguments for
dynamic customization of the form.

	template_name

	Full name of the template which will display
the form. By default it is “envelope/contact.html”.

	success_url

	URL of the page with some kind of a “thank you
for your feedback”, displayed after the form is successfully
submitted. If left unset, the view redirects to itself.

	
form_class

	alias of ContactForm

	
form_invalid(form)

	When the form has errors, display it again.

	
form_valid(form)

	Sends the message and redirects the user to success_url.

	
get_initial()

	Automatically fills form fields for authenticated users.

	
get_success_url()

	Returns the URL where the view will redirect after submission.

	
envelope.views.filter_spam(sender, request, form, **kwargs)

	Handle spam filtering.

This function is called when the before_send signal fires,
passing the current request and form object to the function.
With that information in hand, all available spam filters are called.

TODO: more spam filters

Forms

	
class envelope.forms.ContactForm(*args, **kwargs)

	Base contact form class.

The following form attributes can be overridden when creating the
form or in a subclass. If you need more flexibility, you can instead
override the associated methods such as get_from_email() (see below).

	subject_intro

	Prefix used to create the subject line. Default is
settings.ENVELOPE_SUBJECT_INTRO.

	from_email

	Used in the email from. Defaults to
settings.ENVELOPE_FROM_EMAIL.

	email_recipients

	List of email addresses to send the email to. Defaults to
settings.ENVELOPE_EMAIL_RECIPIENTS.

	template_name

	Template used to render the (plaintext) email message. Defaults to
envelope/email_body.txt.

	html_template_name

	Template used to render the HTML email message. Defaults to
envelope/email_body.html.

	
get_context()

	Returns context dictionary for the email body template.

By default, the template has access to all form fields’ values
stored in self.cleaned_data. Override this method to set
additional template variables.

	
get_email_recipients()

	Returns a list of recipients for the message.

Override to customize how the email recipients are determined.

	
get_from_email()

	Returns the from email address.

Override to customize how the from email address is determined.

	
get_subject()

	Returns a string to be used as the email subject.

Override this method to customize the display of the subject.

	
get_template_names()

	Returns a template_name (or list of template_names) to be used
for the email message.

Override to use your own method choosing a template name.

	
save()

	Sends the message.

Template tags

Add {% load envelope_tags %} to your template before using any of these.

	
envelope.templatetags.envelope_tags.antispam_fields()

	Returns the HTML for any spam filters available.

	
envelope.templatetags.envelope_tags.render_contact_form(context)

	Renders the contact form which must be in the template context.

The most common use case for this template tag is to call it in the
template rendered by ContactView. The template
tag will then render a sub-template envelope/contact_form.html.

Spam filters

	
envelope.spam_filters.check_honeypot(request, form)

	Make sure that the hidden form field is empty, using django-honeypot.

Signals

before_send

Sent after the form is submitted and valid, but before sending the message.

Arguments:

	sender

	View class.

	request

	The current request object.

	form

	The form object (already valid, so cleaned_data is available).

after_send

This signal is sent after sending the message.

Arguments:

	sender

	Form class.

	message

	An instance of EmailMessage [https://docs.djangoproject.com/en/dev/topics/email/#django.core.mail.EmailMessage] that was used to send the message.

	form

	The form object.

Changelog

1.3.0

	added Greek translation, thanks raratiru!

	Python 3.6 and Django 1.11 compatibility

1.2.0

	added Latvian and Russian translations, thanks wildd!

	added Spanish translations, thanks javipalanca!

1.1.0

	added Brazilian Portuguese translation, thanks aleprovencio!

	Python 3.5 and Django 1.9 compatibility

1.0.0

	Improvements and fixes:

	
	HTML email support

	subject field is optional by default

	support for custom User model [https://docs.djangoproject.com/en/dev/topics/auth/customizing/#substituting-a-custom-user-model]

	docs: added Cookbook

	Backwards incompatible changes:

	
	removed category field from ContactForm

	BaseContactForm no longer exists; to customize form processing, subclass
ContactForm directly

	ContactView does not create any flash messages;
use FormMessagesMixin [http://django-braces.readthedocs.org/en/latest/form.html#formmessagesmixin] from django-braces [https://github.com/brack3t/django-braces] (see the Cookbook
for an example)

	dropped Django 1.4 compatibility

	dropped Python 2.6 compatibility; use 2.7 or 3.3+

	message rejection reason from signal handlers isn’t sent to the user in
HTTP 400 response’s body

	the default envelope/contact.html template is removed; one must create
the template explicitly

0.7.0

	added {% render_contact_form %}
template tag

	Django 1.6 compatibility

	settled on 3.3 as the minimum supported Python 3 version

	moved to Travis CI as the continuous integration solution

0.6.1

	fixed NameError in example project

0.6.0

	Python 3 compatibility!

0.5.1

	fixed template loading in tests

0.5.0

	contact form class is more customizable

	the Reply-To header in the message is set to whatever the submitted
email was

	added after_send signal

	django-honeypot [https://github.com/sunlightlabs/django-honeypot] is now just an optional dependency

	example_project is no longer incorrectly distributed with the application

0.4.1

	security bugfix regarding initial form values

0.4.0

	removed the function-based view

	removed ContactForm.send() method

	application signals (before_send)

	updated documentation

	reworked settings

	Continous Integration server, thanks to ShiningPanda

0.3.2

	omit the brackets if the user doesn’t have a full name

	honeypot is mentioned in the usage docs

0.3.1

	configurable recipients

	better logging hierarchy

	the code is more PEP-8 compliant

0.3.0

	introduced a class-based envelope.views.ContactView (requires
Django >= 1.3)

	deprecated the function-based view envelope.views.contact

	improved test coverage

	more and better documentation (also hosted on Read The Docs)

0.2.1

	French translation added

0.2.0

	deprecated the ContactForm.send() method, use
envelope.forms.ContactForm.save() instead for more consistency
with Django coding style

	localization support

0.1.4

	added a more descriptive README file

0.1.3

	added the redirect_to optional argument to view function

0.1.2

	added the extra_context argument to view function

0.1.1

	improved setup script, added dependencies

0.1.0

	initial version

 Python Module Index

 e

 		 	

 		
 e	

 	[image: -]
 	
 envelope	

 	
 	
 envelope.forms	

 	
 	
 envelope.spam_filters	

 	
 	
 envelope.templatetags.envelope_tags	

 	
 	
 envelope.views	

Index

 A
 | C
 | E
 | F
 | G
 | P
 | R
 | S

A

 	
 	antispam_fields() (in module envelope.templatetags.envelope_tags)

C

 	
 	check_honeypot() (in module envelope.spam_filters)

 	
 	ContactForm (class in envelope.forms)

 	ContactView (class in envelope.views)

E

 	
 	envelope.forms (module)

 	envelope.spam_filters (module)

 	
 	envelope.templatetags.envelope_tags (module)

 	envelope.views (module)

F

 	
 	filter_spam() (in module envelope.views)

 	form_class (envelope.views.ContactView attribute)

 	
 	form_invalid() (envelope.views.ContactView method)

 	form_valid() (envelope.views.ContactView method)

G

 	
 	get_context() (envelope.forms.ContactForm method)

 	get_email_recipients() (envelope.forms.ContactForm method)

 	get_from_email() (envelope.forms.ContactForm method)

 	
 	get_initial() (envelope.views.ContactView method)

 	get_subject() (envelope.forms.ContactForm method)

 	get_success_url() (envelope.views.ContactView method)

 	get_template_names() (envelope.forms.ContactForm method)

P

 	
 	
 Python Enhancement Proposals

 	PEP 8

R

 	
 	render_contact_form() (in module envelope.templatetags.envelope_tags)

S

 	
 	save() (envelope.forms.ContactForm method)

 _static/comment-close.png

_static/comment-bright.png

_static/comment.png

_static/minus.png

_static/file.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		django-envelope

 		Installation

 		Usage

 		Configuration

 		Customization

 		Cookbook

 		Success and error messages

 		Bootstrap integration

 		Embedding the contact form

 		Displaying form messages nicely

 		Categorized contact form

 		Development

 		Contributing

 		Report bugs

 		Hack on the code

 		Running tests

 		CI Server

 		Reference

 		Views

 		Forms

 		Template tags

 		Spam filters

 		Signals

 		Changelog

 		1.3.0

 		1.2.0

 		1.1.0

 		1.0.0

 		0.7.0

 		0.6.1

 		0.6.0

 		0.5.1

 		0.5.0

 		0.4.1

 		0.4.0

 		0.3.2

 		0.3.1

 		0.3.0

 		0.2.1

 		0.2.0

 		0.1.4

 		0.1.3

 		0.1.2

 		0.1.1

 		0.1.0

_static/up.png

_static/up-pressed.png

_static/down-pressed.png

_static/down.png

